
Github
อ.ดร.วัชรินทร์ สาระไชย

เน้ือหา

➢ Git Workflows
➢ Feature Branches
➢ Centralized Workflow
➢ Pull Requests
➢ Fork & Clone: Another Workflow
➢ Summarize

Git Workflows
for collaboration

Centralized Workflow

➢ ทุกคนสามารถท างานบน Master/Main branches
➢ ขั้นตอนการท างานร่วมกันที่ง่ายที่สุดคือให้ทุกคนท างานบน master branch (หรือ

main, หรือ branch อันใดอันหนึ่ง).
➢ การท างานแบบนี้ตรงไปตรงมาและสามารถท างานให้กับทีมเล็กๆ ได้

The Problem

➢ While it's nice and easy to only work on the master branch, this
leads to some serious issues on teams!
◆ Lots of time spent resolving conflicts and merging code, especially as

team size scales up.
◆ No one can work on anything without disturbing the main codebase.

How do you try adding something radically different in? How do you
experiment?

◆ The only way to collaborate on a feature together with another
teammate is to push incomplete code to master. Other teammates
now have broken code...

Enter
Feature
Branches
DON'T WORK ON MASTER SILLY GOOSE!

Feature Branches

➢ Rather than working directly on master/main, all new development
should be done on separate branches!
◆ Treat master/main branch as the official project history
◆ Multiple teammates can collaborate on a single feature and share code

back and forth without polluting the master/main branch
◆ Master/main branch won't contain broken code (or at least, it won't unless

someone messes up)

Feature Branch Naming

➢ There are many different approaches for naming
feature branches. Often, you'll see branch names
that include slashes like bug/fix-scroll or
feature/login-form or feat/button/enable-
pointer-events

➢ Specific teams and projects usually have their
own branch naming conventions. To keep these
slides simple and concise, I'm just going to ignore
those best practices for now.

Merging In Feature Branches

➢ At some point new the work on feature branches
will need to be merged into the master branch!
There are a couple of options for how to do this...

1. Merge at will, without any sort of discussion with
teammates. JUST DO IT WHENEVER YOU WANT.

2. Send an email or chat message or something to your
team to discuss if the changes should be merged in.

3. Pull Requests!

Pull Requests

➢ Pull Requests are a feature built into products like
Github & Bitbucket. They are not native to Git itself.

➢ They allow developers to alert team-members to new
work that needs to be reviewed. They provide a
mechanism to approve or reject the work on a given
branch. They also help facilitate discussion and feedback
on the specified commits.
“I have this new stuff I want to merge into the master

branch...what do you all think about it?”

The Workflow

1. Do some work locally on a feature branch
2. Push up the feature branch to Github
3. Open a pull request using the feature branch just pushed up to

Github
4. Wait for the PR to be approved and merged. Start a discussion on

the PR. This part depends on the team structure.

Don't Worry
Github Gives You Instructions If You Forget What To Do!

Recap-ing Pull Requests

➢ Pull Requests are a fancy way of requesting changes from one branch
be merged into another branch.

➢ Tools like Github & Bitbucket allow us to generate pull requests via
an online interface. Team members can then view the changes and
decide to merge them in or reject them. PR's also provide a place to
discuss the changes and provide feedback.

Fork & Clone: Another Workflow

➢ The "fork & clone" workflow is different from anything
we've seen so far. Instead of just one centralized Github
repository, every developer has their own Github
repository in addition to the "main" repo. Developers make
changes and push to their own forks before making pull
requests.

➢ It's very commonly used on large open-source projects
where there may be thousands of contributors with only a
couple maintainers.

Forking

➢ Github (and similar tools) allow us to create personal copies of other
peoples' repositories. We call those copies a "fork" of the original.

➢ When we fork a repo, we're basically asking Github "Make me my own
copy of this repo please”

➢ As with pull requests, forking is not a Git feature. The ability to fork is
implemented by Github.

This repo is not mine. I want a copy!

Now I have my very own copy!

Now What?

➢ Now that I've forked, I have my very own copy of the repo where I
can do whatever I want!

➢ I can clone my fork and make changes, add features, and break things
without fear of disturbing the original repository.

➢ If I do want to share my work, I can make a pull request from my fork
to the original repo.

To Summarize!

➢ I fork the original project repo on Github
➢ I clone my fork to my local machine
➢ I add a remote pointing to the original project repo. This remote is often

named upstream.
➢ I make changes and add/commit on a feature branch on my local machine
➢ I push up my new feature branch to my forked repo (usually called origin)
➢ I open a pull request to the original project repo containing the new work

on my forked repo
➢ Hopefully the pull request is accepted, and my changes are merged in!

An Even Briefer Summary

1. FORK THE PROJECT
2. CLONE THE FORK
3. ADD UPSTREAM REMOTE
4. DO SOME WORK
5. PUSH TO ORIGIN
6. OPEN PR

	Default Section
	Slide 1: Github
	Slide 2: เนื้อหา

	Git Workflows
	Slide 3: Git Workflows
	Slide 4: Centralized Workflow
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: The Problem

	Feature Branches
	Slide 18: Enter Feature Branches
	Slide 19: Feature Branches
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Feature Branch Naming
	Slide 34: Merging In Feature Branches

	Pull Requests
	Slide 35: Pull Requests
	Slide 36: The Workflow
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Don't Worry
	Slide 49
	Slide 50
	Slide 51: Recap-ing Pull Requests

	Fork & Clone: Another Workflow
	Slide 52: Fork & Clone: Another Workflow
	Slide 53: Forking
	Slide 54: This repo is not mine. I want a copy!
	Slide 55
	Slide 56
	Slide 57: Now I have my very own copy!
	Slide 58
	Slide 59: Now What?
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

	Summarize
	Slide 73: To Summarize!
	Slide 74: An Even Briefer Summary

