
Introduction to
Java
PO W E RPO IN T BY , A S S O C . P RO F . RA N GS I T S I R I RA N GS I

PRE S E NT BY D R , . C H I RAWA N RONRA N

I N F O RMAT IO N T E C H N O LO GY M JU

Object Oriented Concepts

ในทุก ๆ โปรแกรมภาษาที่สนับสนุนแนวคิดเชิงวัตถุ จะต้องประกอบไปด้วยคุณสมบัติ
พื้นฐานดังต่อไปนี้
◦ Abstraction
◦ Encapsulation
◦ Data Hiding
◦ Inheritance
◦ Polymorphism

Encapsulation

Data Hiding

Polymorphism

Inheritance

Abstraction

OOP

What Is an Object?

เป็นตัวแทนของสิ่งใดสิ่งหนึ่ง ซึ่งอาจอยู่ในรูปของวัตถุทางกายภาพ (physical)
หรือแนวคิด (conceptual) หรือแม้กระทั่งซอฟต์แวร์ (software)

• Physical Entity

• Conceptual Entity

• Software Entity

Class
คลาสจะเป็นส่วนที่ใช้ในการก าหนดคุณสมบัติของออปเจคที่ใช้ข้อมูลและการ
ท างานร่วมกัน ทุก ๆ ออปเจคที่มีคุณสมบัติเหมือนกันจะถูกสร้างมาจากคลาส
เดียวกัน

ในกระบวนการเชิงวัตถุ คลาสจะมีลักษณะเป็น “พิมพ์เขียว” ของออปเจค
โดย คลาสคือนิยามที่มีลักษณะเป็น “นามธรรม” ส่วนออปเจคจะมีลักษณะเป็น
“รูปธรรม” ที่ถูกสร้างขึ้นตามนิยามที่ก าหนดไว้ใน “คลาส” นั่นเอง

Methods

Defining a Class

รูปแบบของการก าหนด Class
[modifier] class ClassName {

 // ClassBody => data + method()

}

public class Car {

}

modifier เป็นคีย์เวิร์ดที่ใช้ในการก าหนดสิทธิในการใช้งานของ Class

class เป็นคีย์เวิร์ดที่ใช้ในการระบุว่าเป็นการประกาศคลาส

ClassName เป็นการระบุช่ือคลาส โดยปกติอักษรตวัแรกของค าจะถูกก าหนดใหเ้ป็น
ตัวใหญ่เสมอ เช่น

Modifiers of Classes
modifiers ส าหรับ class จะถูกก าหนดไว้ดังรูปแบบต่อไปนี้ :

◦ public—คลาสอาจถูกเรียกใช้ได้โดยตรงจากภายนอก package

◦ abstract—เป็นการก าหนด class ที่ประกอบไปด้วย abstract เมธอดที่ไม่ได้มีการ
ระบุรายละเอียดการท างานไว้ แต่จะมีจุดประสงค์ในการใช้งานส าหรับการสืบทอด
เท่านั้น

◦ final—คลาสที่ถูกก าหนดไว้ในลักษณะนี้จะไม่สามารถน าไปท าการสืบทอดต่อได้

◦ private—จะยอมให้มีการเรียกใช้ได้เฉพาะจากภายใน class

◦ protected—จะยอมให้มีการเรียกใช้ได้เฉพาะจากภายใน class และ Inherit
class

public class Car {

}

Data Member Declaration

<modifiers> <data type> <name> ;

private int width;

Modifiers Data Type Name

public int length;

Methods

Defining an Attribute
แอททริบิวต์คือตัวแปรหรือค่าคงที่ซ่ึงประกาศภายในออปเจคโดยมีรูปแบบ
ดังต่อไปนี้

◦modifier ใช้ในการก าหนดสิทธิในการใช้งานของตัวแปรหรือค่าคงที่

◦ dataType คือชนิดข้อมูลซึ่งอาจเป็นชนิดข้อมูลพื้นฐานหรือชนิดคลาส

◦ attributeName คือชื่อของแอททริบิวต์ เช่น

[modifier] dataType attributeName;

public class Car {

 public int numberOfWheel;

 public String color;

}

Defining an Attribute (TRY)

[modifier] dataType attributeName;

public class Car {

 public int numberOfWheel;

 public String color;

}

Instance

การสร้างออปเจคจะถูกเรียกว่า instantiation โดยออปเจคจะเป็น instance
ของคลาส (New)

การสร้างออปเจคจากคลาสเดียวกันสามารถท าได้อย่างไม่จ ากัด

ออปเจคที่ถูกสร้างขึ้นจะมีรายละเอียดตามคลาสที่ถูกก าหนดไว้

Creating a Class Instance
ในกรณีที่ไม่ได้มีการก าหนด Constructor ไว้ก่อน Java จะท าการสร้างใหโ้ดย
อัตโนมัติ

ใน Java ทุกครั้งที่มีการสร้างออปเจคใหม่เกิดขึ้นจะต้องอาศัยค าสั่ง new ระบุไว้
ที่ Constructor ก่อนเสมอ :
 Car honda = new Car()

ในกรณีนี้จะเป็นการก าหนด reference ที่ชื่อ p ที่ชี้ไปยังออปเจคที่แท้จริง
ภายในเมมโมรี ่

 Car
honda Object

Reference

Example: a Class

class Point {
public int x;
public int y;

}
class Test {

public static void main(String[] args) {

Point p = new Point();
System.out.println(" Value of x = " + p.x + " Value of y = " + p.y);

}
}

• การอ้างถึงค่าที่ถูกก าหนดไว้ภายในแอททริบิวต์
จะท าได้โดยการระบุชื่อของออปเจคตามด้วยชื่อ
ของแอททริบิวต์ที่ต้องการคั่นด้วยเครื่องหมายจุด

Output : Value of x = 0 Value of y = 0

Try : New Class Car

Print ??

public int numberOfWheel;

public String color;

public class Car {
 public int numberOfWheel;
 public String color;

 public static void main(String[] args) {
 Car honda = new Car();
 System.out.println(honda.numberOfWheel);
 System.out.println(honda.color); }
}

Variable Declarations

Modifiers :
◦ public—ข้อมูลจะถูกเข้าถึงได้จากที่ใด ๆ ภายในโปรแกรม

◦ protected—ข้อมูลจะถูกเข้าถึงได้เฉพาะจาก subclass ที่อยู่ภายใน package
เดียวกัน

◦ private—ข้อมูลจะถูกเข้าถึงได้จาก code ภายใน class เดียวกัน

final—ข้อมูลที่ถูกก าหนดในลักษณะนี้จะไม่สามารถเปลี่ยนแปลงได้

static— ในกรณีที่ต้องการพื้นที่ของข้อมูลภายในหน่วยความจ าเพียงต าแหน่งเดียวเพื่อ
ใช้ส าหรับการเก็บข้อมูล โดยไม่ค านึงถึงจ านวนออปเจคที่ถูกสร้างขึ้น

Defining a Private Attribute

class Point // File Point.java
{
private int x;
private int y;

}
class Test // File Test.java
{
public static void main(String[] args) {

Point p = new Point();

System.out.println(" Value of x = " + p.x + " Value of y = " + p.y);
} Output : Error

Class Definition : Review

class {

}

Class Name

Attribute / Data

Members

Methods
(incl. Constructor)

Defining a Method
ภาษาจาวาก าหนดรูปแบบของการประกาศเมธอดที่อยู่ในคลาสไว้ดังนี้

[modifier] return_type methodName ([argument]) {
 // method_body
}

• modifier คือคีย์เวิร์ดที่ใช้ในการก าหนดสทิธิในการเรียกใช้เมธอด
• return_type เป็นส่วนที่ใช้ก าหนดชนดิของข้อมูลที่ตอ้งการคืนค่า ภายหลัง

จากสิ้นสดุการท างานภายในเมธอด
• methodName เป็นการระบุช่ือของเมธอด โดยปกติขึ้นต้นดว้ยตัวเลก็
• arguments ประกอบไปด้วยช่ือและชนิดข้อมลูที่ใชใ้นการรับข้อมูลจากออป

เจคที่เรียกใช้

Modifiers of Methods
ส่วนของ modifiers ส าหรับเมธอดอาจก าหนดได้ดังนี้:
◦ public—เมธอดจะถูกเรียกใช้ได้จากโค้ดใด ๆ
◦ protected—เมธอดจะถูกเรียกใช้ได้จาก package เดียวกันหรือ subclass
◦ private—เมธอดสามารถจะถูกใช้ได้จากโค้ดที่อยู่ภายใน class เดียวกัน
◦ abstract—เป็นการก าหนดเฉพาะชื่อและพรามิเตอร์ของเมธอด โดยไม่มีการ

ระบุ code ในการท างานไว้
◦ static—เป็นเมธอดที่สามารถเรียกใช้ได้โดยตรง โดยไม่จ าเป็นจะต้องท าการ

สร้างออปเจคไว้ก่อน
◦ final—เป็นการก าหนดเมธอดไม่ให้สามารถท าการ overriden ได้

Method Definitions

◦ ในกรณีที่มีการประกาศตัวแปรภายในเมธอด จะถือเป็นการท างานภายในบล็อก
โค้ด ซ่ึงตัวแปรดังกล่าวไม่สามารถเรียกใช้ได้จากภายนอก

◦ เมธอดไม่สามารถประกาศไว้ภายในเมธอดอื่น ๆ ได้
◦ ในกรณีที่มีการระบุชนิดของการคืนค่าไว้ บรรทัดสุดท้ายภายในเมธอดจะต้อง

ระบุ (ไม่ใช่ void)
◦ return expression;
◦ Expression อาจเป็นนิพจน์หรือค่าที่มีชนิดข้อมูลแบบเดียวกับที่ระบุไว้ใน

return_type
◦ หมายเหตุ เมธอดในจาวาคืนค่าได้เพียงค่าเดียวเช่นเดียวกับภาษาซี

Type of Methods

นอกเหนือจาก constructor เมธอดในการจัดการตัวแปรสามารถแบ่งออกไดเ้ป็น
2 ชนิด ได้แก่:

• เมธอดแบบ accessor (หรือที่เรียกว่าเมธอดแบบ get) เป็นเมธอดทีใ่ช้
ส าหรับการคืนค่าของออปเจคที่ถูกระบุ

• เมธอดแบบ mutator (หรือที่เรียกว่าเมธอดแบบ set) เป็นเมธอดที่ใช้
ส าหรับการเซทค่าหรือเปลี่ยนแปลงค่าข้อมูลที่อยู่ภายในออปเจค

<modifier> <return type> <method name> (<parameters>){

 <statements>

}

Accessor method

เมธอดแบบนี้ใช้ส าหรับการเข้าถึงโดยการอ่านค่าข้อมูลหรือแอทริบิวตท์ี่อยู่
ภายในออปเจค โดยปกติจะมีชื่อขึ้นต้นด้วย get?() เสมอ ส่วนเครื่องหมาย ?
ใช้แทนชื่อของข้อมูลหรือแอทริบิวต์ที่ถูกเรียกใช้

เมธอดแบบนี้จะคืนค่าเสมอ โดยปกติจะเป็นค่าชนิดเดียวกับค่าข้อมูลภายใน
ออปเจค ดังนั้นจึงมีคีย์เวิร์ด return เสมอ

class Value

{

 private int x;

 public int getX()

 {

 return(x);

 }

}

4x

getX()

Method Declaration : Accessor

public int getX () {

 return x;

}

Statements

Modifier Return Type Method Name Parameter

4x

accessor()

Try : Class Car -> Create Get Method

Print ??

public int numberOfWheel;

public String color;

public class Car {
 private int numberOfWheel;
 private String color;

 public int getNumberOfWheel() {
 return numberOfWheel;
 }

 public String getColor() {
 return color;
 }
}

Mutator methods
เมธอดแบบนี้ใช้ส าหรับการแก้ไขค่าของข้อมูลหรือแอทริบิวต์ที่อยู่ภายในออปเจค โดยปกติจะ
มีรายการพารามิเตอร์ชนิดเดียวกับแอทริบิวต์ที่ต้องการแก้ไขค่า

เนื่องจากมีจุดประสงค์ในการแก้ไขค่า เมธอดแบบนี้จึงไม่มีการคืนค่าเสมอ return_type ถูก
ก าหนดให้เป็น void เสมอ

class Value

{

 private int x;

 public void setX(int xVal)

 {

 x = xVal;

 }

}
4x

setX()

xVal

Method Declaration : Mutator

public void setX (int xValue) {

 x = xValue;

}

Statements

Modifier Return Type Method Name Parameter

4x

mutator()

value

Try : Class Car -> Create Set Method

Print ??

public int numberOfWheel;

public String color;

public class Car {
 private int numberOfWheel;
 private String color;
 public void setNumberOfWheel(int numberOfWheel) {
 this.numberOfWheel = numberOfWheel;
 }

 public void setColor(String color) {
 this.color = color;
 }
}

Class with Accessor & Mutator Method
public class Point {

 private int x;
private int y;

public void setX (int xValue) {
x = xValue;

}
public int getX() { return x; }

Data declared here

Methods

Class declared here

Class with Accessor & Mutator Method
class Point {
private int x;
private int y;

public void setX(int xValue) {
x = xValue;

}
public int getX() { return x; }

public void setY(int yValue) {
y = yValue;

}
public int getY() { return y; }

}

Data declared here

Methods

Object Type declared here

Creating a Class Instance
ในกรณีที่ไม่ได้มีการก าหนด Constructor ไว้ก่อน Java จะท าการสร้างใหโ้ดย
อัตโนมัติ

ใน Java ทุกครั้งที่มกีารสร้างออปเจคใหม่เกิดขึ้นจะต้องอาศัยค าสั่ง new ระบุไว้
ที่ Constructor ก่อนเสมอ :
 Point p = new Point()

ในกรณีนี้จะเป็นการก าหนด reference ที่ชื่อ p ที่ชี้ไปยังออปเจคที่แท้จริง
ภายในเมมโมรี ่

 Point
P Object

Reference

Method calls
โดยปกติแล้วการเรียกใช้เมธอดจะประกอบไปด้วย 3 ส่วนที่ส าคัญดังนี้ :
◦ ชื่อของออปเจคที่ต้องการเรียกใช้เมธอดที่ต้องการ
◦ ชื่อของเมธอดที่ต้องการเรียกใช้
◦ พารามิเตอร์ที่เมธอดต้องการ

การเรียกใช้เมธอดในโปรแกรมเชิงวัตถุจะถือเป็นการติดต่อกันระหว่างออปเจค ดังนั้นจึง
จ าเป็นต้องสร้างออปเจคด้วยคีย์เวิร์ด new ก่อนเสมอ

className name = new className();

การเรียกใช้เมธอดภายในออปเจคจะเหมือนกับการระบุค่าแอททริบิวต์ภายในออปเจค
โดยมีรูปแบบดังนี้

name.methodName();

Using objects

Point p = new Point();

p.setX(5);

p.setY(5);

class Point {

private int x;
private int y;

public void setX(int xValue) {

x = xValue;

}

public int getX() {

return x;

}

public void setY(int yValue) {

y = yValue;

}

public int getY() { return y; }

}

class TestRun
{
 public static void main(String[] args) {

Point p = new Point();

p.setX(5);
p.setY(5);
System.out.println(" Value of x = "+ p.getX() +" Value of y = "+ p.getY());

}
} Output : Value of x = 5 Value of y = 5

Using objects

แต่ละออปเจคจะมีเมธอดเหมือนกัน แต่มีข้อมูลแตกต่างกัน

q

p

setx(…)

sety(…)

5x

5y

4x

4y

Point p = new Point();

p.setX(5);
p.setX(5);

 Point q = new Point();

 q.setX(4);

q.setY(4);

Try : Class Car
set color = Black

Set numberOfWheel = 4

 public static void main(String[] args) {
 Car1 honda = new Car1();
 honda.setColor("Black");
 honda.setNumberOfWheel(4);
 System.out.println(honda.getNumberOfWheel());
 System.out.println(honda.getColor());
 }

Methods

class Shape {
 int x = 10;
 int y = 10;
 public int calcalteSquare() {
 return x*y;
 }
}

Class Run {
 public static void main(String[] args) {
 Shape shape = new Shape();
 System.out.println(shape.calcalteSquare());
 }
}

การสร้างเมธอดไม่ได้มีเพียงค่า Set และ get เท่านั้น

Review Method How to : calculateTax()

1 รูปแบบของการเขียนเมธอด
modifier return_type methodName([argument])
{
 // method body
}

ต้องการค านวณราคาสินค้ารวมภาษีจาก จ านวนสินค้า (Qty) และราคาสินค้า (price) พร้อม
 ทั้งภาษีจ านวน 7 % -> Invoice

2 ระบุชนิดข้อมูลที่ต้องการคืนค่า
ในกรณีนี้ต้องการค านวณราคาสินค้ารวมภาษี ซึ่งมีแนวโน้มเป็นทศนิยม ดังนั้นก าหนดข้อมูล
ชนิด double พร้อมก าหนดค าสั่ง return ในเมธอด
 public double () {

// body
return;

}

Review Method How to
3 ก าหนดชื่อของเมธอด

ชื่อของเมธอดควรขึ้นต้นด้วยอักษรตัวเล็กและอักษรตัวใหญ่ในค าถัด ๆ ไป
public double calculateTax() {
 //body
return;
}

4 ระบุพารามิเตอร์ที่ต้องการ
 เริ่มจาก ชนิดข้อมูล ชื่อตัวแปรคั่นด้วยเครื่องหมาย comma ในกรณีที่มีพารามิเตอร์หลาย
ตัว ส่วน body ของเมธอดจะอยู่ภายในเครื่องหมายปีกกา
 public double calculateTax (int qty, double price) {

 // body
return ;

 }

Review Method How to
5 เขียนโค้ดภายในเมธอด

ในกรณีนี้ค่าราคารวมภาษีค านวณได้จากจ านวนสินค่า (Qty) และราคาสินค้า (price)
พร้อมท้ังภาษีจ านวน 7 % ซึ่งสามารถเขียนเป็นโค้ดส าหรับการค านวณได้ดังต่อไปนี้

public double calculateTax(int qty, double price)

 {
 double subtotal;

 subtotal = price * qty;

return (subtotal* 0.07);

}

Constructor

คอนสตรัคเตอร์เป็นเมธอดชนิดพิเศษที่ใช้ส าหรับการก าหนดค่าเริ่มต้นของออป
เจค โดยปกติจะใช้ร่วมกับคีย์เวิร์ดตัวกระท า (Operator) ที่เรียกว่า new เมื่อมี
การสร้างออปเจคใหม่เกิดขึ้น

การประกาศคอนสตรัคเตอร์จะแตกต่างไปจากเมธอดอื่น ๆ โดยมีรูปแบบดังนี้:

AccessSpecifier ConstructorName (Parameter lists)

{
 // ConstructorBody

}

Constructors

• ชื่อของ Constructor จะเป็นช่ือเดียวกบัคลาส และอาจรบัค่าพารามิเตอร์ได้

• เนื่องจากคอนสรัคเตอร์ท าหนา้ที่เปน็กลไกในการก าหนดค่าเริ่มต้นของออปเจคทีถู่ก
เรียกใช้โดยอัตโนมัตทิุกครั้งที่ออปเจคถูกสรา้งขึ้นจากคลาส

• การก าหนดคอนสรัคเตอร์จะไมม่กีารก าหนดชนิดของการคืนค่า (return) ใด ๆ ไว้

• โดยปกติคอนสรคัเตอร์จะเป็น public

•หากการประกาศคลาสไมไ่ด้มีการก าหนดคอนสตรักเตอร์ใด ๆ ไว้ จาวาจะท าการสร้าง
default constructor ให้โดยอัตโนมัติ

•นอกจากนั้นแล้วคอนสตรักเตอร์ทีไ่ม่ได้มีการก าหนดพารามเิตอรไ์ว้จะถือเป็น default
constructor

Constructor :Initialized Object

public class Point {

private int x = 0;

private int y = 0;

// a constructor!

public Point() { }

Point A = new Point();

Point Object

A

x

y

Constructor (1/2)

public <class name> (<parameters>) {
 <statements>

}

public Point (int xValue, int yValue) {

 x = xValue;

 y = yValue;

}

Statements

Modifier Class Name Parameter

Constructor :Initialized Object

public class Point {

private int x = 0;

private int y = 0;

// a constructor!

public Point() {}

public Point(int xValue, int yValue) {

 x = xValue;

 y = yValue;

}

}

Point A = new Point(44,78);

Point Object

A

44x

78y

Class Point with Constructor
class Point {

private int x;
private int y;
public Point(int x, int y) {

this.x = x;
this.y = y;

}
 public void setX(int xValue) { x = xValue; }

public int getX() { return x; }
public void setY(int yValue) { y = yValue; }
public int getY() { return y; }

}

Class Point with Constructor
class Test {
 public static void main(String[] args) {

Point a = new Point(44, 78);
System.out.println(" Value of p.x = " + a.getX()+ " Value of p.y = " +
 a.getY());

Point q = new Point(0,0);
q.setX(5);
q.setY(5);
System.out.println(" Value of q.x = " + q.getX() + " Value of q.y = " +
q.getY());
}

}

Output : Value of a.x = 44 Value of a.y = 78

Value of q.x = 5 Value of q.y = 5

Overloaded

เกิดขึ้นเมื่อสองเมธอดหรือมากกว่ามีชื่อที่เหมือนกันและถูกประกาศไว้ภายในคลาส
เดียวกัน โดยขึ้นอยู่กับความต้องการของผู้ใช้

โดยปกติแล้วการ overloading เมธอดจะแตกต่างกันเฉพาะในส่วนของรายละเอียด
ของพารามิเตอร์เท่านั้น

การท างานของเมธอดที่ถูก overloaded ในลักษณะนี้จะเกิดขึ้นในช่วงระหว่างการ
ประมวลผลเท่านั้น โดยท่ีจ านวนและชนิดของพารามิเตอร์ภายในเมธอดจะถูกเรียกใช้
ในช่วงเวลาที่ก าหนดไว้ช่วงใดช่วงหนึ่งเสมอ

คอมไพเลอร์จะท าหน้าที่ในการแยกความแตกต่างของเมธอดจากจ านวนของ
พารามิเตอร์ที่ถูกระบุนั่นเอง เม่ือคอมไพเลอร์ท าการแปลรหัสโค้ดส่วนนี้ ก็จะสามารถ
จ าแนกได้ว่าคอนสตรักเตอร์ใดท่ีก าลังถูกเรียกใช้ในช่วงเวลาการท างาน

Overloaded Constructor
public class Point {

private int x;
private int y;
public Point() {

x = 0; y = 0;
}
public Point(int xValue, int yValue) {

x = xValue; y = yValue;
}
public Point(Point p) {

x = p.getx(); y = p.gety();
}

}

Overloaded Constructor

public Point() คอนสตรักเตอร์แบบแรกจะไม่มีการระบุพารามิเตอร์ไว้ จึงใช้
ส าหรับการก าหนดค่าเริ่มต้นของ x และ y ให้เป็น 0

public Point(int xValue, int yValue) คอนสตรักเตอร์แบบที่สองจะประกอบ
ไปด้วยพารามิเตอร์ 2 จ านวน จึงใช้ส าหรับก าหนดค่าของตัวแปร x และ y พรอ้ม
กับการสร้างออปเจคได้ในคราวเดียว

public Point(Point p) คอนสตรักเตอร์แบบที่สามจะรับค่าพารามิเตอร์ในรูปของ
ออปเจคจากคลาสเดียวกัน และท าการก าหนดค่าตัวแปร x และ y จากค่าของออป
เจค p เป็นหลัก ในกรณีนี้จะเป็นตัวอย่างการท างานที่เรียกว่า copy constructor
เนื่องจากใช้ส าหรับการสร้างออปเจคใหม่จากคลาส point ที่ท าการส าเนาค่าจาก
ออปเจคที่ผ่านค่ามาในรูปของพารามิเตอร์นั่นเอง

Overloaded Constructor with Point class

class Point {

private int x; private int y;

public Point() { x = 0; y = 0; }

public Point(int xValue, int yValue) { x = xValue; y = yValue; }

public Point(Point p) { x = p.x; y = p.y; }

public int getX() { return x; }

public int getY() { return y;}

}

Overloaded Constructor with Point class
class Test
{

public static void main(String[] args) {
Point p = new Point();
System.out.println(" Value of p.x = " + p.getX() +" Value of p.y = " + p.getY());
Point q = new Point(5,5);
System.out.println(" Value of q.x = " + q.getX() + " Value of q.y = " + q.getY());

Point r = new Point(q);

System.out.println(" Value of r.x = " + r.getX() + " Value of r.y = " + r.getY());

}

}

Output :

Value of p.x = 0 Value of p.y = 0

Value of q.x = 5 Value of q.y = 5

Value of r.x = 5 Value of r.y = 5

Overload สามารถใช้กับเมธอดทั่วไปได้

	Slide 1: Introduction to Java
	Slide 2: Object Oriented Concepts
	Slide 3: What Is an Object?
	Slide 4: Class
	Slide 5: Defining a Class
	Slide 6: Modifiers of Classes
	Slide 7: Data Member Declaration
	Slide 8: Defining an Attribute
	Slide 9: Defining an Attribute (TRY)
	Slide 10: Instance
	Slide 11: Creating a Class Instance
	Slide 12: Example: a Class
	Slide 13: Try : New Class Car
	Slide 14: Variable Declarations
	Slide 15: Defining a Private Attribute
	Slide 16: Class Definition : Review
	Slide 17: Defining a Method
	Slide 18: Modifiers of Methods
	Slide 19: Method Definitions
	Slide 20: Type of Methods
	Slide 21: Accessor method
	Slide 22: Method Declaration : Accessor
	Slide 23: Try : Class Car -> Create Get Method
	Slide 24: Mutator methods
	Slide 25: Method Declaration : Mutator
	Slide 26: Try : Class Car -> Create Set Method
	Slide 27: Class with Accessor & Mutator Method
	Slide 28: Class with Accessor & Mutator Method
	Slide 29: Creating a Class Instance
	Slide 30: Method calls
	Slide 31: Using objects
	Slide 32
	Slide 33: Using objects
	Slide 34: Try : Class Car
	Slide 35: Methods
	Slide 36: Review Method How to : calculateTax()
	Slide 37: Review Method How to
	Slide 38: Review Method How to
	Slide 39: Constructor
	Slide 40: Constructors
	Slide 41: Constructor :Initialized Object
	Slide 42: Constructor (1/2)
	Slide 43: Constructor :Initialized Object
	Slide 44: Class Point with Constructor
	Slide 45: Class Point with Constructor
	Slide 46: Overloaded
	Slide 47: Overloaded Constructor
	Slide 48: Overloaded Constructor
	Slide 49: Overloaded Constructor with Point class
	Slide 50: Overloaded Constructor with Point class

